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A B S T R A C T

The hydroelastic behavior of a vertical wall in periodic waves is investigated using a fully-coupled computa-
tional fluid dynamics (CFD) and computational solid mechanics (CSM) model. The present numerical model is
verified against previous numerical and experimental results on wave evolution and structural displacement.
Then the hydrodynamic characteristics and the structural responses of an elastic wall in periodic waves are
parametrically investigated. It is demonstrated that wave reflection, run-up, and loading decrease as the
wall becomes more flexible. The decreases also occur when the waves become shorter. With nonlinear wave
propagation, both the displacement and the stress of the wall are larger in the shoreward direction than those
in the seaward direction. The wall displacement has the same frequency as the exciting waves and the stress
increases with the decrease of the ratio of the wave frequency to the wall’s natural frequency. Considering the
effect of flexibility, empirical formulae are proposed for predicting the wave run-up, loading, and maximum
displacement of the wall. Besides, the optimization of the flexible wall is conducted by taking into account
both the defense performance (i.e., transmission coefficient) and the structural integrity (i.e., maximum von
Mises stress). Finally, the effect of the material damping is studied, which shows that the material damping
has a negligible effect on the interaction between periodic waves and the elastic structure.
1. Introduction

Sea-level rise, extreme marine events, together with increasing
flood risk due to climate change put coastal communities at growing
threats (Field and Barros, 2014; Ranasinghe, 2016; Toimil et al.,
2020; Nicholls and Cazenave, 2010). The existing coastal and offshore
structures are often designed as rigid in the majority of engineering
practices. However, traditional hard structures have to suffer costly
maintenance and repair, especially after extreme storm events. In
many situations, they are old and poor-maintained, which increases
the coastal vulnerability (Jin et al., 2015). Therefore, investigating and
optimizing the characteristics of flexible structures subjected to waves
can be a significant research direction.

Many studies were devoted to the interaction between waves and
perfectly rigid structures (Huang et al., 2022). Reeve et al. (2008)
numerically investigated the discharges of overflow and wave overtop-
ping over a rigid seawall with various freeboard and slope conditions
subjected to irregular waves. They derived empirical formulae to pre-
dict the discharges with consideration of the overflow and the wave
overtopping effects. Hsiao and Lin (2010) studied solitary waves im-
pinging on a rigid trapezoidal seawall with experimental and numerical
approaches. They found that the maximum wave force often occurs
with the minimum freeboard and the wave run-up to the overtopping

∗ Corresponding author.
E-mail address: pearl.li@nus.edu.sg (Y. Li).

stage, which might lead to substantial structural damage and instabil-
ity. Ning et al. (2017) carried out a numerical study on the interaction
between the focused wave and a vertical rigid wall through a higher-
order boundary element method. They observed that wave nonlinearity
can increase the wave pressure on the wall. Attili et al. (2021) numer-
ically investigated the hydrodynamic characteristics of the landslide-
tsunamis impacting dams considering the three-dimensional effects of
both oblique waves and arch dams. They proposed empirical formulae
for predicting the wave loading, run-up, overtopping volume, and
maximum overtopping depth for dams.

However, it has been observed that steep-fronted rigid structures
can induce full wave reflection, which can yield aggravated scour and
impair the stability of the structure. Although it is yet to be built in
practice, flexible structures showed better hydrodynamic performance
and wave damping effect compared to rigid structures in the recent
laboratory studies. For example, Sree et al. (2021) performed an ex-
perimental study on the evolution of periodic waves interacting with a
submerged viscoelastic plate. They reported that the most flexible plate
placed close to the mean water level can yield a nearly complete cutoff
of wave energy transmission. Nevertheless, to date, detailed laboratory
studies on the interaction between progressive waves and steep-fronted
vailable online 5 November 2022
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flexible structures are lacking. A few analytical and numerical investi-
gations have been conducted on the hydroelastic interaction between
water waves and vertical walls. For example, He and Kashiwagi (2009)
simulated the vibration of a vertical rigid wall connected to a linear
spring at back under the impact of a nonlinear pulse-type wave. They
found that the nonlinear effect can cause an obvious discrepancy in
the wall’s motion compared with the linear analytical solution. Peter
and Meylan (2010) analytically described the vibration of an elastic
wall in linear waves based on a generalized eigenfunction expansion
method. He and Kashiwagi (2012) later investigated the hydroelastic
behavior of both the top-fixed and the top-free walls with a bottom-
fixed end in a solitary wave based on the potential flow and the
linear beam assumptions. They coupled the fluid and the solid by
combining the boundary element method and the finite element model
in a monolithic way (i.e., solving fluid and solid motions with a single
solver). Akrish et al. (2018) simulated the elastic wall in an incident
wave group by a high-order spectral method, where the linear beam
model was applied. They found that the hydroelastic effect can relax
or amplify both hydrodynamic characteristics (i.e., wave run-up and
force) and structural oscillations. However, the linear assumptions used
in the above numerical solutions for either the fluid or the solid may
have limited accuracies when predicting the finite-strain structure and
nonlinear wave interactions.

As such numerical simulations involve the interaction between two
physical domains, i.e., the fluid and the solid, some coupling algorithms
have been developed for the numerical models. Dermentzoglou et al.
(2021) adopted a one-way coupling of computational fluid dynamics
(CFD) and finite element method (FEM) to investigate the failure of a
recurved wall with different concrete classes. Sriram and Ma (2012)
simulated the interaction between the breaking wave and an elastic
wall. The fluid and the solid were solved in a partitioned approach with
a near-strongly coupling at the interface, i.e., fluid particles maintained
their positions from the end of the previous time step during fluid–
structure-interaction (FSI) iterations. Liao and Hu (2013) proposed a
FDM–FEM model (where FDM stands for the finite difference method)
to investigate the interaction between the surface flow and a thin elastic
wall with large deformation. The standard linear beam element was
employed and coupled with the fluid using a conservative momentum-
exchange method based on the immersed boundary method. Kumar and
Sriram (2020) simulated the breaking wave impacting on an elastic
wall with a linear beam theory. They strongly coupled the fluid and
the solid based on an iterative scheme. To avoid the ideal linear as-
sumptions that have been used in most of the previous studies, Tuković
et al. (2018) and Cardiff et al. (2018) developed an open-source tool-
box integrating the fluid and the solid fields using the finite volume
method in the OpenFOAM framework. This integrated model can be
used for both fluids with nonlinear dynamics and structures with
nonlinear mechanical laws (i.e., the stress tensor is a nonlinear func-
tion of the displacement vector). Huang et al. (2019) combined this
model with the wave generation toolbox waves2Foam (Jacobsen et al.,
2012) to investigate the hydroelastic effects of a nonlinear ice sheet
in monochromatic waves. Huang and Li (2022) further improved the
model to study the hydroelasticity of a submerged horizontal-plate
breakwater in nonlinear waves. They observed a better wave-damping
performance with a deformable plate. To the authors’ knowledge, a
detailed investigation of the nonlinear interaction between progressive
waves and a vertical elastic wall has not been conducted yet.

The present work combines the IHFOAM wave-modeling toolbox
(Higuera et al., 2013) with a fully-coupled FSI approach (Tuković et al.,
2018; Cardiff et al., 2018) to study the hydroelasticity of a vertical wall
in periodic waves, aiming to get an overall insight into the nonlinear
wave evolution and the corresponding structural response. The paper
is organized as follows. The computational approach is described in
Section 2 followed by the numerical setup in Section 3. Thereafter, the
FSI model is verified against the numerical results of He and Kashiwagi
2

(2012) and validated against the experimental results of Didier et al.
(2014), as in Section 4. In Section 5, simulations are conducted for an
elastic cantilever wall with different bending stiffness under nonlinear
wave loading. The hydrodynamic and structural behaviors are inves-
tigated and optimized. Empirical formulae are proposed for the wave
run-up, loading, and wall displacement estimations. Besides, the effect
of the material damping on the hydroelasticity is investigated. Section 6
provides the conclusions.

2. Numerical method

The present numerical model consists of computational fluid dy-
namics (CFD) and computational solid mechanics (CSM) together with
a fully-coupled algorithm. The governing equations are listed as fol-
lows.

2.1. Computational fluid dynamics

The CFD model solves the Navier–Stokes equations for incompress-
ible, isothermal, and Newtonian flows:

∇ ⋅ 𝐮 = 0 (1)

𝜕(𝜌𝐮)
𝜕𝑡

+ ∇ ⋅ (𝜌𝐮𝐮𝑇 ) = −∇𝑝 + ∇ ⋅ 𝝉 + 𝜌𝐠 (2)

where 𝐮 is the velocity vector of the water–air mixture, 𝜌 is the density,
𝑝 is the pressure, 𝐠 is the gravitational acceleration, and 𝝉 is viscous
stress tensor defined by 𝝉 = 𝜇

(

∇𝐮 + ∇𝐮𝑇
)

, in which 𝜇 is the dynamic
viscosity of the fluid.

The laminar flow model is employed in this simulation follow-
ing Huang and Li (2022) since the turbulent effects are expected to
be negligible in the present cases (i.e., no wave breaking), which can
effectively reduce the computational costs. Free surface simulations
utilize the IHFOAM model (Higuera et al., 2013) for wave generation
and absorption. The Volume of Fluid (VOF) approach (Hirt and Nichols,
1981) is applied to capture the water–air interface with a defined phase
indicator (𝛼) denoting the proportion of the water volume in each
discrete cell. 𝛼 varies from 0 to 1 with 𝛼 = 1 denoting a cell full of
water and 𝛼 = 0 indicating a cell full of air. Its transport equation is:
𝜕𝛼
𝜕𝑡

+ ∇ ⋅ (𝐮𝛼) + ∇ ⋅
[

𝐮𝐜𝛼(1 − 𝛼)
]

= 0 (3)

here 𝐮𝐜 is the interface compression velocity between air and water
or the purpose of reducing the numerical diffusion (Weller et al.,
998). Furthermore, the mixed density and viscosity can be weighted
n terms of 𝛼:

= 𝛼𝜌𝑤 + (1 − 𝛼)𝜌𝑎 (4)

= 𝛼𝜇𝑤 + (1 − 𝛼)𝜇𝑎 (5)

here 𝜌𝑤 = 1000 kg∕m3 is the water density, 𝜌𝑎 = 1 kg∕m3 is the air
ensity, 𝜇𝑤 = 1 × 10−3 N s∕m2 is the dynamic viscosity of the water,
nd 𝜇𝑎 = 1.48 × 10−5 N s∕m2 is the dynamic viscosity of the air.

.2. Computational solid mechanics

Considering finite strains of the solid domain, the nonlinear me-
hanical constitutive law, i.e., Neo-Hookean hyperelastic law, as imple-
ented in Cardiff et al. (2018), is used to calculate the Cauchy stress.
he integration of the momentum equation in the total Lagrangian form
refer to the initial undeformed configuration) is given as:

𝜌𝑠
𝜕2𝐃
𝜕𝑡2

𝑑𝑉 = ∮
(

𝐽𝐖−𝑇 ⋅ 𝐧
)

⋅ 𝝈𝑑𝑆 + ∫ 𝜌𝑠𝐠𝑑𝑉 (6)

where 𝜌𝑠 is the solid density, 𝐃 is the displacement vector, 𝐖 is
the deformation gradient tensor given by 𝐖 = 𝐈 + (∇𝐃)𝑇 , 𝐈 is the
second-order identity tensor, 𝐽 is Jacobian matrix of 𝐖, i.e., det[𝐖], in
which det[⋅] is the determinant operator, and 𝐧 is the outward facing
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normal vector. The Cauchy stress tensor 𝝈 is a nonlinear function of
he displacement vector:

= 𝐺 dev[𝐽−2∕3𝐖 ⋅𝐖𝑇 ] + 𝜅
2

(

𝐽 2 − 1
𝐽

)

𝐈 (7)

where 𝐺 and 𝜅 are the shear modulus and bulk modulus, respectively.
They can be calculated by Young’s modulus 𝐸 and Poisson’s ratio 𝜈:

𝐺 = 𝐸
2(1 + 𝜈)

(8)

𝜅 = 𝐸
3(1 − 2𝜈)

(9)

2.3. Fully-coupled algorithm

A partitioned scheme is implemented for the interaction between
the fluid and the solid domains. This means that the fluid and solid
domains can be solved alternately, whilst the momentum and kinematic
continuity at the fluid–solid interface is satisfied by a two-way coupling
algorithm based on the Dirichlet–Neumann approach (Tuković et al.,
2018). For all time steps, the pressure and velocity fields can first be
obtained for the fluid domain. Then the fluid force is passed onto the
solid interface where dynamic condition, i.e., force balance, is satisfied:

𝐧 ⋅ 𝝈fluid = 𝐧 ⋅ 𝝈solid (10)

where 𝝈fluid = 𝝉−𝑝𝐈 is the stress in the fluid domain. Thereby the solid
domain can be solved with this Neumann condition (traction) at the
interface boundary. Then, the velocity of the solid interface is passed
back to the fluid interface using the Aitken under-relaxation approach,
i.e., the relaxation factor varies in the FSI iterations to reduce the dis-
placement residual faster. The fluid domain is therefore calculated with
a Dirichlet condition of velocity at the interface boundary, satisfying
the kinematic condition:

𝐮fluid = 𝐮solid (11)

Meanwhile, the mesh of the fluid domain is updated for the next
iteration. A number of iterations are required for each time step to
achieve a continuous displacement across the interface:

𝐃fluid = 𝐃solid (12)

A flowchart of the present fully-coupled FSI algorithm is illustrated
in Fig. 1. In the present study, the tolerance of the displacement
residual (i.e., the relative displacement between the fluid side and
solid side interfaces) is specified as 1 × 10−6 m which is a negligible
value compared with the magnitude of the displacement. Besides, the
maximum number of FSI iterations per time step is set as 60, which
allows the convergence to be achieved in each time step.

3. Model setup and boundary conditions

A two-dimensional numerical flume is established as shown in
Fig. 2. The length and height of the flume are 10𝐿 and 2ℎ, respectively,
in which 𝐿 denotes the wavelength and ℎ is the water depth. The
numerical flume is built in a Cartesian coordinate system with 𝑥-axis
pointing toward the wave propagation direction and 𝑧-axis toward the
vertical direction. The origin of the coordinate system (𝑂) is set at the
center of the flume’s bottom. A vertical wall is built in the center of the
flume with a thickness of ℎ∕15 and a length (𝑙) of 7ℎ∕6, resulting in a
freeboard height of ℎ∕6.

Three wave gauges represented by WG1–WG3 are placed upstream
of the vertical wall. WG1 is at 𝑥 = −10ℎ and the interval distances
of WG1–WG2 and WG2–WG3 are 0.2𝐿 and 0.3𝐿, respectively. The
reflected wave induced by the vertical wall is estimated by a wave
reflection analysis method of Goda and Suzuki (1977) using the wave
elevation records from wave gauges WG1–WG3. Moreover, a wave
gauge WG4 is placed on the front side of the deformed wall. It moves
3

along with the structural interface to observe the run-up which is
Table 1
Structural and wave properties in the present simulations.

Model Mechanical properties 𝐻 (m) 𝑇 (s)

𝜌𝑠 (kg∕m3) 𝐸 (GPa) 𝑓𝑛 (Hz) 𝛾 𝛽

1 1200 0.0120 2.640 0.08 0.10

0.04 0.6–1.6a

2 1200 0.0180 3.234 0.08 0.15
3 1200 0.0240 3.734 0.08 0.20
4 1200 0.0300 4.175 0.08 0.25
5 1200 0.0360 4.573 0.08 0.30
6 1200 0.0480 5.281 0.08 0.40
7 1200 0.0720 6.468 0.08 0.60
8 1200 0.1190 8.315 0.08 1.00
9 1200 0.5950 18.592 0.08 5.00
10 1800 35.760 117.687 0.12 30.0

aHere the interval of the wave period is 0.2 s.

defined as the distance between the still water level and the maximum
water level on the wall. To accurately evaluate the transmission co-
efficient (i.e., shoreward energy propagation), WG5–WG7 are placed
downstream of the wall to perform the reflection analysis. Therefore,
the evaluation of the transmission coefficient is not influenced by the
wave reflection from the outlet boundary (5% on average). Besides, the
horizontal wave loading per unit width of the wall 𝐹𝑥 is obtained by
integrating the pressure on the solid interface.

For the applicability of analysis, the mechanical properties of the
wall are normalized into two non-dimensional parameters by the water
depth. In particular, the mass coefficient of the vertical wall is defined
as:

𝛾 =
𝜌𝑠𝑏
𝜌𝑤ℎ

(13)

where 𝑏 is the thickness of the wall. The stiffness coefficient of the
vertical wall is given by:

𝛽 = 𝐸𝐼
𝜌𝑤𝑔ℎ4

(14)

where 𝐼 = 𝑏3∕12 is the moment of inertia of the wall.
The present study is conducted on the model scale. The simulated

structural and wave properties are listed in Table 1 with 60 cases in
total. A series of wall models (i.e., Models 1–9) with different mechan-
ical properties are considered for the present parametric investigation.
The material stiffness gradually increases from Model 1 to Model 9, and
Model 10 (almost rigid body) serves as a control group. The structural
characterization can properly describe the structural responses under
the wave loading (Dermentzoglou et al., 2021). Therefore, the corre-
sponding natural frequency of the first mode for each model is obtained
by the analytical solution for a cantilever beam, 𝑓𝑛 = 𝑘𝑛

2𝜋

√

𝐸𝐼
𝜌𝑠𝑙4

, where
𝑘𝑛 = 3.52 (Young et al., 2012). The range of wave conditions modeled
is given in Table 1 with a constant wave height 𝐻 = 0.04 m, water
depth ℎ = 0.3 m, and a series of wave periods 𝑇 = 0.6−1.6 s. The
incident wave ranges from Stokes 2nd order to Stokes 3rd order before
reaching the wall according to Le Méhauté (2013).

The boundary conditions are set as follows. In the fluid domain,
the left and right sides of the flume are specified as wave inlet and
wave outlet, respectively. Wave generation boundary with active wave
absorption is applied at the wave inlet and waves are generated by the
stream function theory (Fenton, 1988). Wave absorption boundary is
applied at the wave outlet and the radiated waves stimulated by the
oscillation of the wall can be effectively absorbed at the end of the
numerical flume (for more details, see Higuera et al. (2013)). Note that
we initially attempted to employ waves2Foam with the relaxation zone
approach developed by Jacobsen et al. (2012) for the wave generation
and absorption (as that has been used in Li et al. (2018, 2020) for rigid
structures). However, our generated wave height could not reach the
targeted value during propagation with mesh deformation. Instead, we

incorporated the wave generation and absorption technique in IHFOAM
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Fig. 1. Flowchart of FSI coupling algorithm.
Fig. 2. Schematic diagram of the numerical flume (not to scale).
(using active wave absorption to cancel out the reached waves on the
boundaries) and were able to achieve accurate and stable wave propa-
gation when combined with moving mesh. The bottom and the top are
set as no-slip wall and atmospheric boundary conditions, respectively.
The interfaces with solid are set as the Dirichlet boundary condition
for the velocity (see Eq. (11)). In the solid domain, the interfaces with
fluid are specified as the Neumann boundary condition for the traction
(see Eq. (10)). The bottom of the wall is set as a fixed-support boundary
condition and keeps clamped under the wave loading.

The present fully-coupled model is based on a cell-centered finite
volume method. Spatial and temporal discretizations are introduced
in the computational simulation with a non-overlapping structured
hexahedral mesh and finite time steps. In particular, the spatial domain
consists of the fluid sub-domain and the solid sub-domain, which can
simultaneously represent the evolution of the fluid and the structure.
The governing equations (Eqs. (1) and (2)) can be numerically solved
using specified initial and boundary conditions. The Pressure Implicit
with Splitting of Operators (PISO) algorithm (Issa, 1986) is applied to
decouple the 𝑝 − 𝐮 equations and iteratively solve them. Time inte-
gration is determined by the Courant–Friedrichs–Lewy (CFL) criteria.
The simulations are performed with a fixed time step 𝛥𝑡 = 0.001 s,
which ensures the Courant number 𝐶𝑜 ≤ 0.1 for wave propagation and
4

𝐶𝑜 ≤ 0.2 near the structure as the wave orbital velocity increases due
to the reflection. The passage of 30 waves per simulation case takes
approximately 2 days using 12 processors on the supercomputer of the
National Supercomputing Centre (NSCC).

4. Model verification

4.1. Verification against solitary wave interaction with an elastic wall

Detailed validations for the present model have been conducted
in Huang and Li (2022) for an elastic submerged horizontal plate in
nonlinear waves. For the present study involving a vertical elastic
wall in periodic waves, there was no experimental study in the open
literature. The present model was thereby adequately verified against
the numerical results of He and Kashiwagi (2012), who investigated the
hydroelastic behavior of a vertical cantilever wall in a solitary wave.
Their work was well validated against the analytical result of Peter and
Meylan (2010) and another numerical simulation based on a mode-
expansion method (He and Kashiwagi, 2009). Recently, their results
were also verified by Akrish et al. (2018). Therefore, their model results
are seeming to be reliable for our verification purposes.
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Fig. 3. Comparison of the normalized (a) wave elevation at 𝑥 = −10ℎ and (b) horizontal displacement of the wall at 𝑧 = ℎ∕2 between the present simulation and He and Kashiwagi
(2012).
In this subsection, the case of the top-free wall was simulated with
different cell sizes for the fluid domain and the solid domain. A solitary
wave with a wave height of 0.04ℎ was generated at 𝑥 = −50ℎ. The mass
coefficient 𝛾 and the stiffness coefficient 𝛽 of the wall are 0.01 and
0.04, respectively. The height of the wall is 1.1ℎ and the normalized
time duration 𝑡

√

𝑔∕ℎ is 180 in this verification simulation, in which
the water depth is again set as ℎ = 0.3 m. For comparison, the wave
elevation 𝜂∕𝐻 at 𝑥 = −10ℎ and the horizontal displacement 𝐷𝑥∕𝐻 of
the wall at 𝑧 = ℎ∕2 were recorded.

Three sets of mesh with 5, 10, and 15 cells per wave height
were employed. The aspect ratio of the cells was set as 1/3 (i.e., cell
height/cell width), which conformed to the range proposed in Jacobsen
et al. (2014). The simulated results show good agreement with (He and
Kashiwagi, 2012) as seen in Fig. 3a. A small drop in our simulated
reflected wave occurs at 𝑡

√

𝑔∕ℎ = 132.8. It is because the deforma-
tion of the wall transfers the wave energy downstream, which is not
considered in He and Kashiwagi (2012). It is found that the result of
10 cells/𝐻 is almost identical to that of 15 cells/𝐻 , while the result
of 5 cells/𝐻 slightly overestimates the wave elevation. Therefore, the
mesh set with 10 cells per wave height is adopted for what follows in
this subsection. The horizontal displacement of the wall at 𝑧 = ℎ∕2 is
verified using three different sets of solid mesh with 200, 400, and 600
cells (i.e., 2×100, 4×100, and 6×100 cells in the horizontal and vertical
directions). In Fig. 3b, the result of 400 cells is fairly close to that of
600 cells, which achieves convergence. However, the displacement of
200 cells is notably lower, especially near the peak value. The mesh
set of 400 cells is seen to provide an accurate and efficient solution,
therefore is used for the solid domain in the following simulations.

4.2. Validation against periodic waves interaction with a rigid wall

Section 4.1 provided the verification on a solitary wave. As the
present study focuses on the periodic waves, the numerical model was
validated against the experiment of Didier et al. (2014) for regular
waves impacting on a vertical rigid wall. The numerical simulations
were conducted with the identical setup as in Didier et al. (2014). A
non-breaking wave case with 𝐻 = 0.1 m, 𝑇 = 1.3 s, and ℎ = 0.325 m
was selected for the present validation. Three densities of mesh (i.e., 10,
15, and 20 cells per wave height with an aspect ratio of 1/3) were
tested for the grid convergence study. Fig. 4a shows the comparison of
the wave elevation at 2.643 m from the wave-maker initial position.
All sets of the mesh give satisfactory predictions compared to the lab-
oratory measurement. The mesh of 15 cells/𝐻 shows nearly identical
5

results as the mesh of 20 cells/𝐻 and slightly more accurate results
compared to the mesh of 10 cells/𝐻 . Fig. 4(b–c) show the pressure at
0.055 m and 0.165 m above the bottom of the wall, respectively. A good
agreement is globally observed between numerical and experimental
results. Note that the maximum pressure in the simulation is larger than
the experiment, which is due to an insufficient data sampling rate at
the experimental tests, as reported in Didier et al. (2014). Based on the
above results, the mesh set with 15 cells per wave height is used for
the following simulations. The utilized final mesh with a zoom-in view
is shown in Fig. 5, where the fluid interface is conformal to the solid
interface to minimize the interpolation error at boundaries.

5. Results and discussion

Detailed investigations of waves interacting with an elastic wall in
terms of hydrodynamic characteristics, structural dynamic responses,
structural optimization, and material damping effect are presented in
the following subsections.

5.1. Hydrodynamic characteristics

5.1.1. Reflection and transmission coefficients
To investigate the energy propagation of waves interacting with

the elastic wall, the reflection coefficient (𝐶𝑟, i.e., the ratio of the
reflected wave height to the incident wave height) and the transmission
coefficient (𝐶𝑡, i.e., the ratio of the radiated wave height caused by
the oscillation of the wall to the incident wave height) against the
stiffness coefficient 𝛽 are analyzed and shown in Fig. 6. The rigid
wall (i.e., 𝛽 = 30) presents a perfect reflection with no transmission
despite the changes in wave steepness (𝐻∕𝐿). For the elastic walls, as
𝛽 increases from 0.10 to 5, 𝐶𝑟 gradually increases whilst 𝐶𝑡 decreases.
This trend is more obvious when the value of 𝛽 is relatively small.
Besides, it is seen that 𝐶𝑟 is with an increasing tendency against the
increase of the wavelength 𝐿 (corresponding to the decrease of 𝐻∕𝐿),
especially for the smaller 𝛽, indicating that longer waves are easier to
be reflected by elastic walls. It is worthwhile to mention that the value
of 𝐶2

𝑟 + 𝐶2
𝑡 is close to 1 for all scenarios, which implies that the total

reflected and transmitted wave energy is approximately equal to the
incident wave energy with negligible energy dissipation. Thereby, the
increase of 𝐶 naturally leads to the decrease of 𝐶 for each model.
𝑟 𝑡



Coastal Engineering 179 (2023) 104245Z. Hu et al.
Fig. 4. Comparison of the normalized (a) wave elevation at 2.643 m from the wave-maker initial position, (b) pressure at 0.055 m above the bottom of the wall, and (c) pressure
at 0.165 m above the bottom of the wall.
Fig. 5. The zoom-in view of the (a) undeformed and (b) deformed mesh with blue denoting the fluid domain and red denoting the solid domain. The white line represents the
interface between the fluid and solid, and the black line at the bottom represents the fixed end of the wall.
5.1.2. Wave run-up and loading
Besides 𝐶𝑟 and 𝐶𝑡, other important considerations are the wave

run-up and loading on the wall with various stiffness coefficients. The
wave run-up 𝑅 (nondimensionalized by 𝐻) and the horizontal peak
force per unit width 𝐹𝑥,𝑚𝑎𝑥 (nondimensionalized by 𝜌𝑤𝑔ℎ𝐻) exerted
on the wall are shown in Fig. 7. For both the rigid and elastic walls,
the normalized wave run-up 𝑅∕𝐻 increases with the wavelength 𝐿, as
illustrated in Fig. 7a. This is because the longer waves have larger wave
excursion, 𝐴𝑤 = 𝑢𝑥,𝑚𝑎𝑥𝑇 ∕2𝜋, where 𝑢𝑥,𝑚𝑎𝑥 is the maximum horizontal
velocity of the fluid particle. 𝐴 increases from 0.020 m to 0.036 m
6

𝑤

as the wavelength 𝐿 increases from 0.56 m to 2.53 m (correspond-
ing to 𝐻∕𝐿 decreases from 0.071 to 0.016). Besides, 𝑅∕𝐻 gradually
increases with 𝛽 and the gradient is negligible when 𝛽 > 1, which
is similar to the tendency of 𝐶𝑟. Fig. 7b shows that the normalized
𝐹𝑥,𝑚𝑎𝑥 also increases with 𝛽 and 𝐿, while the change of the wavelength
makes a bigger difference of 𝐹𝑥,𝑚𝑎𝑥 especially for the rigid wall. The
increases of both the wave run-up and loading against 𝛽 are due to the
enhanced wave reflection causing a higher wave elevation on the wall
when superimposed with the incident wave. Therefore, the dynamic
pressure on the wall can be increased with the wave reflection, which
causes a higher pressure difference between the front and back of the



Coastal Engineering 179 (2023) 104245Z. Hu et al.
Fig. 6. Comparisons of (a) reflection coefficient and (b) transmission coefficient induced by walls with different stiffness coefficients 𝛽.
Fig. 7. Comparisons of (a) wave run-up and (b) horizontal peak wave force between walls with different stiffness coefficients 𝛽.
wall. Compared with the rigid wall, the introduction of flexibility can
significantly reduce the wave run-up and loading on the wall.

The predictions of the wave run-up and horizontal peak force are of
great importance for the design and optimization of flexible structures
in coastal engineering. Previous studies showed a linear dependence of
the normalized run-up on the wave steepness (Hunt, 1959):
𝑅𝑝𝑟𝑒𝑑

𝐻
= 𝑎

(𝐻
𝐿

)𝑐
(15)

For the wave run-up estimation on vertical elastic structures, the stiff-
ness coefficient 𝛽 describing the flexural rigidity should also be con-
sidered in addition to the wave steepness. Therefore, we propose a
modified equation for the prediction of the wave run-up on a vertical
elastic wall as follows:

𝑅𝑝𝑟𝑒𝑑

𝐻
= 𝑎

⎛

⎜

⎜

⎝

1
1 + 1

𝑘𝛽

⎞

⎟

⎟

⎠

(𝐻
𝐿

)𝑐
(16)

where 𝑅𝑝𝑟𝑒𝑑 is the predicted wave run-up, 𝑎, 𝑘, and 𝑐 are the empirical
coefficients. This form of the formula allows it to revert to that for
rigid structures (Eq. (15)) when 𝛽 is very large. A wide range of wall
stiffness and wave conditions are calibrated in Fig. 8a for the best
fitting, resulting in 𝑎 = 0.697, 𝑘 = 20.629, and 𝑐 = −0.132. The empirical
formula (Eq. (16)) successfully captures the numerical results with a
coefficient of determination of 0.894. Most of the cases lie within ±6%
deviations. Likewise, the predicted horizontal peak force exerted on the
wall per unit width 𝐹𝑥,𝑚𝑎𝑥,𝑝𝑟𝑒𝑑 can be obtained by:

𝐹𝑥,𝑚𝑎𝑥,𝑝𝑟𝑒𝑑

𝜌𝑤𝑔ℎ𝐻
= 𝑎

⎛

⎜

⎜

⎝

1
1 + 1

𝑘𝛽

⎞

⎟

⎟

⎠

(𝐻
𝐿

)𝑐
(17)

Forces calculated by Eq. (17) with 𝑎 = 0.033, 𝑘 = 12.799, and 𝑐 =
−0.815 are compared with numerical results in Fig. 8b. It provides
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good estimations with a coefficient of determination of 0.962. These
modified prediction formulae can provide the evaluations for the wave
run-up and loading of vertical elastic structures.

5.2. Dynamic response of the wall

5.2.1. Displacement of the wall
To further investigate the structural response of the elastic wall in

periodic waves, the horizontal displacement of the wall is analyzed.
Fig. 9 shows the comparisons between the wave elevation 𝜂 at the
front face of the moving wall, horizontal wave force 𝐹𝑥, and the
horizontal displacement at the free top 𝐷𝑥 during two wave cycles with
𝐻∕𝐿 = 0.016. For Model 2 (see Fig. 9a), an approximately 0.06𝑇 phase
lag is observed between 𝐷𝑥 and 𝜂. Thereby 𝐷𝑥 slightly lags behind
the wave force. Note that the amplitudes of the crest and trough are
slightly asymmetric for 𝜂, 𝐹𝑥, and 𝐷𝑥 because of the superposition of
higher-order nonlinear wave components. In Fig. 9b, the signals in the
time domain are decomposed into the components of the fundamental
frequency and higher harmonics using a fast Fourier transform (FFT),
where the frequencies are normalized by the incident wave frequency
(𝑓𝑤). It is observed that 𝐷𝑥 has the same frequency as that of the
incident wave loading. Besides, the amplitude of 𝐷𝑥 is predominant
at the fundamental frequency, with a minor role in the 2nd harmonic,
and negligible in the 3rd and 4th harmonics, which is determined by
the wave excitation. Fig. 9(c–d) present the results of Model 5 in the
same wave condition. With a larger 𝛽, the abovementioned phase lag
between 𝐷𝑥 and 𝜂 tends to decrease to about 0.02𝑇 , which implies
the wall displacement becomes more synchronous with the exerted
wave elevation as well as the wave loading. As expected, the vibration
frequency is again the same as the wave force, independent of the wall
properties.
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Fig. 8. Comparisons of the predicted (a) wave run-up obtained by Eq. (16) and (b) horizontal peak wave force obtained by Eq. (17) with numerical results.
Fig. 9. Time series and the corresponding amplitude spectrum of the wave elevation, horizontal wave force, and horizontal displacement of the wall for (a–b) Model 2 and (c–d)
Model 5 in waves with 𝐻∕𝐿 = 0.016.
Fig. 10a presents the horizontal maximum displacement 𝐷𝑥,𝑚𝑎𝑥
(nondimensionalized by the wave excursion 𝐴𝑤) against the ratio of the
incident wave frequency to the natural frequency of the wall, 𝑓𝑤∕𝑓𝑛.
It is obvious that 𝐷𝑥,𝑚𝑎𝑥∕𝐴𝑤 rapidly increases with 𝑓𝑤∕𝑓𝑛 under the
same wave condition. This increase is more significant for waves with
a smaller 𝐻∕𝐿 and the structure with a larger 𝑓𝑤∕𝑓𝑛. However, for the
same structure (connected by dotted lines), a peak of 𝐷𝑥,𝑚𝑎𝑥∕𝐴𝑤 seems
to appear at waves with 𝐻∕𝐿 = 0.019. Given the same dimensionless
parameters as that in Eqs. (16) and (17), the predicted horizontal
maximum displacement 𝐷𝑥,𝑚𝑎𝑥,𝑝𝑟𝑒𝑑 can be directly obtained by the
following formula:
𝐷𝑥,𝑚𝑎𝑥,𝑝𝑟𝑒𝑑

𝐴𝑤
= 𝑎

(

1
1 + 𝑘𝛽

)

(𝐻
𝐿

)𝑐
(18)

As shown in Fig. 10b, 𝐷𝑥,𝑚𝑎𝑥,𝑝𝑟𝑒𝑑 predicted by Eq. (18) with 𝑎 = 1.872,
𝑘 = 17.210, and 𝑐 = −0.221 almost coincide with the numerical results
with a coefficient of determination of 0.984. Most of the data lie within
the ±6% derivations. Therefore, the proposed empirical formula can
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provide satisfactory estimations for the displacement of the elastic wall
in a certain range of wave conditions and material stiffness.

5.2.2. Von Mises stress in the wall
Figs. 11–13 present snapshots of the free surface (denoted by blue

contours) together with the bending deflection as well as the von
Mises stress 𝜎𝑣 (nondimensionalized by 𝜌𝑤𝑔𝐻) in the wall under wave
loading. For Model 1 in periodic waves with 𝐻∕𝐿 = 0.029 and 𝑓𝑤∕𝑓𝑛 =
0.379, a phase lag is seen between the structural displacement and
the wave elevation, i.e., the horizontal maximum displacement 𝐷𝑥,𝑚𝑎𝑥
(i.e., shoreward displacement amplitude) occurs at 𝑡 = 0.14𝑇 instead of
at the wave crest (see Fig. 11a). At this moment, the pressure difference
between the upstream and downstream sides lead to the peak 𝜎𝑣 during
the whole wave cycle. The relatively high stress is concentrated near
the toe, with a maximum stress 𝜎𝑣,𝑚𝑎𝑥 at the rear side of the wall. In
the vertical direction, 𝜎𝑣 gradually decreases to zero from the bottom to
the free top. As waves propagate, the minimum horizontal displacement
𝐷 (i.e., seaward displacement amplitude) of the wall occurs at
𝑥,𝑚𝑖𝑛
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Fig. 10. Comparison of the horizontal maximum displacement between (a) cases with different frequency ratios and (b) the predicted and numerical results.
Fig. 11. Snapshots of periodic waves with 𝐻∕𝐿 = 0.029 on Model 1 at (a) 𝐷𝑥 = 𝐷𝑥,𝑚𝑎𝑥 and (b) 𝐷𝑥 = 𝐷𝑥,𝑚𝑖𝑛.
𝑡 = 0.64𝑇 (see Fig. 11b). 𝜎𝑣 in Fig. 11b is slightly smaller than that
in Fig. 11a, which is more obvious at the rear toe of the wall. This is
again due to wave nonlinearity, where the fluid moves faster at the
wave crest than the wave trough (Dean and Dalrymple, 1991).

Fig. 12 shows the results of Model 2 with a larger stiffness coeffi-
cient. Comparing Fig. 12 and Fig. 11, as 𝑓𝑤∕𝑓𝑛 decreases from 0.379
to 0.309, 𝜎𝑣 in the wall increases under both wave forth and back
loadings, especially near the toe of the wall. This is because the restor-
ing force caused by the stiffness becomes more dominant compared
with the hydrodynamic force. Note that the abovementioned phase lag
between the wall displacement and the wave elevation decreases to
about 0.10𝑇 with the decrease of 𝑓𝑤∕𝑓𝑛. Fig. 13 shows the results of
Model 2 in waves with a smaller 𝐻∕𝐿. Comparing Fig. 13 and Fig. 12,
as 𝐻∕𝐿 decreases from 0.029 to 0.016, 𝑓𝑤∕𝑓𝑛 decreases from 0.309
to 0.193. It can be found that the von Mises stress further significantly
9

increases. However, the phase lag between 𝜂 and 𝐷𝑥 decreases to 0.06𝑇
with the decrease of 𝑓𝑤∕𝑓𝑛.

5.3. Optimal design conditions of the flexible wall

As discussed above, the change of the frequency ratio 𝑓𝑤∕𝑓𝑛 and the
wave steepness 𝐻∕𝐿 can significantly affect the wave evolution and the
structural integrity. A stiffer structure can have larger wave-induced
stresses in the wall, which has negative impact on the structural in-
tegrity. However, the decrease of the structural stiffness (i.e., more
flexible) can intensify the shoreward energy transmission, which can
exacerbate coastal vulnerability (Jin et al., 2015). Therefore, a design
balance should be considered when incorporating the flexibility of the
wall. In the present study, a preliminary optimization of the flexibility is
conducted to balance the defense performance and structural integrity.
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Fig. 12. Snapshots of periodic waves with 𝐻∕𝐿 = 0.029 on Model 2 at (a) 𝐷𝑥 = 𝐷𝑥,𝑚𝑎𝑥 and (b) 𝐷𝑥 = 𝐷𝑥,𝑚𝑖𝑛.
In the optimization, minimizing transmission coefficient 𝐶𝑡 is cho-
sen as one objective for improving the defense performance while
minimizing maximum von Mises stress 𝜎𝑣,𝑚𝑎𝑥 is another objective for
ensuring the integrity of the wall. We know from the parametric study
above that these two objectives conflict with each other. Thereby
optimal decisions need to be taken in the presence of trade-offs between
them. Meanwhile, there are also many other considerations e.g. the
cost, which are not included in the present optimization scope. Fig. 14a
shows the contour of 𝐶𝑡 against 𝑓𝑤∕𝑓𝑛 and 𝐻∕𝐿. It is seen that the
smallest 𝐶𝑡 distributes in the space with small 𝑓𝑤∕𝑓𝑛 and 𝐻∕𝐿. The
transmission coefficient seems to be almost uniform for a specific
𝑓𝑤∕𝑓𝑛. To ensure low wave transmission (𝐶𝑡 < 0.5, i.e., 75% energy
cutoff), 𝑓𝑤∕𝑓𝑛 < 0.25 can be an optimal choice. Therefore, we can focus
on the single objective of minimizing 𝜎𝑣,𝑚𝑎𝑥. Fig. 14b shows a nearly
opposite trend of 𝜎𝑣,𝑚𝑎𝑥 against 𝑓𝑤∕𝑓𝑛 and 𝐻∕𝐿. It is noted that for
relatively longer waves (0.016 < 𝐻∕𝐿 < 0.029) and smaller frequency
ratio (𝑓𝑤∕𝑓𝑛 < 0.25), 𝜎𝑣,𝑚𝑎𝑥 in the wall is extreme large (Fig. 14b).
The decrease in wavelength (corresponding to the increase of 𝐻∕𝐿)
can significantly reduce the stress in the structure. 𝐻∕𝐿 > 0.029 results
in 𝜎𝑣,𝑚𝑎𝑥∕𝜌𝑤𝑔𝐻 almost smaller than 300, thereby can be considered as
an optimal choice for this range of wave steepness. Therefore, The area
of 𝐻∕𝐿 > 0.029 and 𝑓𝑤∕𝑓𝑛 < 0.25 could be an optimal choice for design
balance. Note that optimal solutions are dependent on the relative
importance of the objectives, which can lead to different solutions in
different applications.

5.4. The effect of the material damping

As an effective-damping material, rubbers can restrain the vibratory
motion by dissipating the energy. As the aforementioned study did not
consider material damping, in this section, we aim to study how much
material damping can affect the interaction between periodic waves
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and an elastic wall. To consider the material damping, an additional
term (i.e., 𝑐𝑠 ∫ 𝜌𝑠

𝜕𝐃
𝜕𝑡 𝑑𝑉 ) is added at the left hand side of Eq. (6), in

which 𝑐𝑠 is the constant viscous damping coefficient of the material. An
approximate damping coefficient 𝑐𝑠 = 0.15 𝑠−1 of rubber is introduced
herein with reference to the quantification of Lin et al. (2005).

Here we present the results for Model 1 in waves with 𝐻∕𝐿 =
0.023 as an example. The dimensionless wave elevation of WG4, hor-
izontal displacement of the free top, and horizontal force per unit
width exerted on the wall with (𝑐𝑠 = 0.15 𝑠−1) and without (𝑐𝑠 =
0 𝑠−1) material damping are compared in Fig. 15. It can be found
that the two curves coincide with each other in all subplots, which
indicates that the material damping does not affect the hydrodynamic
characteristics and structural responses of the elastic wall in periodic
waves. This is because the loading of ocean waves is continuous and
with low frequency. Therefore the damping term is proportional to
a very low deformation rate (i.e., small 𝜕𝐃

𝜕𝑡 ), resulting in a negligible
damping effect compared to the wave loading. As a result, the material
damping can be ignored in simulations leading to related problems.
This corroborates the discussion given in Huang and Li (2022), in which
the authors inferred that the material damping has negligible influence
on the hydroelastic wave–structure interaction. However, the damping
effect for the impact of other environmental loads, e.g., seismic loads
may still need to be considered.

6. Conclusions

The present study performed a systematic investigation of the hy-
droelastic behavior of a wall in periodic waves using a fully-coupled
wave–structure interaction model. The main conclusions in this study
are drawn as follows:

(1) In contrast to a rigid wall with perfect reflection, a remark-
able reduction is observed in wave reflection with an increased wave
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Fig. 13. Snapshots of periodic waves with 𝐻∕𝐿 = 0.016 on Model 2 at (a) 𝐷𝑥 = 𝐷𝑥,𝑚𝑎𝑥 and (b) 𝐷𝑥 = 𝐷𝑥,𝑚𝑖𝑛.
Fig. 14. Contours of (a) transmission coefficient and (b) maximum von Mises stress against the frequency ratio and the wave steepness.
transmission for the applied elastic wall. This is more obvious for more
flexible walls.

(2) Higher flexibility of the wall is observed to significantly reduce
the wave run-up and loading. Modified empirical formulae are pro-
posed for the predictions of run-up and maximum wave loading by
introducing the effect of structural flexibility, which provides quick es-
timations for the results obtained through time-consuming simulations.
This can be particularly useful in early-stage design processes.

(3) A slight phase lag is observed between the horizontal displace-
ment of the elastic wall and the exerted wave loading. It increases with
the ratio of the incident wave frequency to the wall’s natural frequency.
The structural response has the same frequency as that of the wave
force. An empirical formula is also proposed for the prediction of the
maximum displacement.
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(4) The normalized von Mises stress in the wall increases with
the decrease of the ratio of the incident wave frequency to the wall’s
natural frequency. The relatively high stresses are concentrated near
the toe of the wall, with maximum stress at the rear toe of the wall.
Similar to the wall displacement, the stress is larger in the shoreward
direction than those in the seaward direction.

(5) The optimization of the flexible wall is studied taking into
account both the defense performance and the structural integrity.
Besides, material damping is proved to have a negligible effect on the
interaction between periodic waves and an elastic wall.

The present work aims to support the design and optimization of an
elastic wall interacting with periodic waves. More experimental data
are required to fully validate the design and optimizations. Meanwhile,
the present model (released in the next section) should a useful tool for
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Fig. 15. Comparison of the normalized (a) wave elevation, (b) horizontal displacement at the free top, and (c) horizontal force exerted on walls with and without material
damping.
predicting the interaction between ocean waves and flexible structures
in the coastal and offshore regions.
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